- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Guangliang (2)
-
McEnnis, Kathleen (2)
-
Alkhoury, Keven (1)
-
Brassart, Laurence (1)
-
Chen, Hao (1)
-
Chester, Shawn A (1)
-
López_Ruiz, Aida (1)
-
Nadimpalli, Siva PV (1)
-
Piccininni, Nicole (1)
-
Sathya, Asmitha (1)
-
Siddiq, Noshin (1)
-
Xiao, Mengyuan (1)
-
Zhang, Chi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
López_Ruiz, Aida; Xiao, Mengyuan; Sathya, Asmitha; Piccininni, Nicole; Liu, Guangliang; Siddiq, Noshin; Chen, Hao; McEnnis, Kathleen (, AIChE Journal)Abstract Drug delivery systems have renewed attention in recent years to achieve targeted delivery while decreasing toxic side effects. However, there are many factors that prevent optimal administration of drug delivery particles. For instance, protein corona formation and aggregation both decrease the circulation half‐life of drug delivery particles, leading to sequestration to the liver and spleen. Therefore, optimal surface modifications are needed to decrease protein corona formation and avoid aggregation. In this work, polystyrene particles were modified with multi‐arm and linear polyethylene glycol (PEG) to determine their aggregation profiles and protein corona formation. Multi‐arm PEGs were found to aggregate more than linear PEGs, due to the change in zeta potential from unreacted end groups, which may lead to shorter circulation half‐lives. Furthermore, the protein corona formation and composition were studied after different washing procedures, highlighting the importance of studying protein corona formation with undiluted blood plasma.more » « less
An official website of the United States government
